Semaine 15

$$\gdef \sam #1 {\mathrm{softargmax}(#1)}$$ $$\gdef \vect #1 {\boldsymbol{#1}} $$ $$\gdef \matr #1 {\boldsymbol{#1}} $$ $$\gdef \E {\mathbb{E}} $$ $$\gdef \V {\mathbb{V}} $$ $$\gdef \R {\mathbb{R}} $$ $$\gdef \N {\mathbb{N}} $$ $$\gdef \relu #1 {\texttt{ReLU}(#1)} $$ $$\gdef \D {\,\mathrm{d}} $$ $$\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}$$ $$\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}$$ $$\gdef \set #1 {\left\lbrace #1 \right\rbrace} $$ % My colours $$\gdef \aqua #1 {\textcolor{8dd3c7}{#1}} $$ $$\gdef \yellow #1 {\textcolor{ffffb3}{#1}} $$ $$\gdef \lavender #1 {\textcolor{bebada}{#1}} $$ $$\gdef \red #1 {\textcolor{fb8072}{#1}} $$ $$\gdef \blue #1 {\textcolor{80b1d3}{#1}} $$ $$\gdef \orange #1 {\textcolor{fdb462}{#1}} $$ $$\gdef \green #1 {\textcolor{b3de69}{#1}} $$ $$\gdef \pink #1 {\textcolor{fccde5}{#1}} $$ $$\gdef \vgrey #1 {\textcolor{d9d9d9}{#1}} $$ $$\gdef \violet #1 {\textcolor{bc80bd}{#1}} $$ $$\gdef \unka #1 {\textcolor{ccebc5}{#1}} $$ $$\gdef \unkb #1 {\textcolor{ffed6f}{#1}} $$ % Vectors $$\gdef \vx {\pink{\vect{x }}} $$ $$\gdef \vy {\blue{\vect{y }}} $$ $$\gdef \vb {\vect{b}} $$ $$\gdef \vz {\orange{\vect{z }}} $$ $$\gdef \vtheta {\vect{\theta }} $$ $$\gdef \vh {\green{\vect{h }}} $$ $$\gdef \vq {\aqua{\vect{q }}} $$ $$\gdef \vk {\yellow{\vect{k }}} $$ $$\gdef \vv {\green{\vect{v }}} $$ $$\gdef \vytilde {\violet{\tilde{\vect{y}}}} $$ $$\gdef \vyhat {\red{\hat{\vect{y}}}} $$ $$\gdef \vycheck {\blue{\check{\vect{y}}}} $$ $$\gdef \vzcheck {\blue{\check{\vect{z}}}} $$ $$\gdef \vztilde {\green{\tilde{\vect{z}}}} $$ $$\gdef \vmu {\green{\vect{\mu}}} $$ $$\gdef \vu {\orange{\vect{u}}} $$ % Matrices $$\gdef \mW {\matr{W}} $$ $$\gdef \mA {\matr{A}} $$ $$\gdef \mX {\pink{\matr{X}}} $$ $$\gdef \mY {\blue{\matr{Y}}} $$ $$\gdef \mQ {\aqua{\matr{Q }}} $$ $$\gdef \mK {\yellow{\matr{K }}} $$ $$\gdef \mV {\lavender{\matr{V }}} $$ $$\gdef \mH {\green{\matr{H }}} $$ % Coloured math $$\gdef \cx {\pink{x}} $$ $$\gdef \ctheta {\orange{\theta}} $$ $$\gdef \cz {\orange{z}} $$ $$\gdef \Enc {\lavender{\text{Enc}}} $$ $$\gdef \Dec {\aqua{\text{Dec}}}$$

Cours magistral partie A

Dans cette section, nous abordons l’apprentissage de représentations visuelles en nous concentrant sur l’apprentissage autosupervisé. Les méthodes applicables peuvent être classées en modèles génératifs, tâches de prétexte et méthodes d’enchâssements joints. Dans les modèles génératifs, on entraîne le modèle à reconstruire l’image originale à partir de l’image bruitée. Dans les tâches de prétextes, on entraîne le modèle à trouver un moyen intelligent de générer des pseudo-étiquettes. Les méthodes d’enchâssements joints tentent de rendre leur backbone robuste à certaines distorsions et invariant à l’augmentation des données. Les méthodes d’entraînement des JEMs peuvent être classées en quatre types : méthodes contrastives, méthodes non-contrastives, méthodes de clustering et les « autres méthodes ». Nous concluons en discutant des méthodes contrastives qui rapprochent les paires positives et éloignent les paires négatives.

Cours magistral partie B

Dans cette section, nous abordons les méthodes non-contrastives qui sont basées sur la théorie de l’information et ne nécessitent pas d’architectures ou de techniques d’ingénierie particulières. Ensuite, nous voyons les méthodes de clustering qui empêchent une solution triviale en quantifiant l’espace d’enchâssement. Enfin, nous parlons d’« autres méthodes » qui sont locales et ne créent pas de problème pour l’entraînement distribué contrairement aux méthodes précédentes. Nous concluons en suggérant diverses améliorations pour les JEMs par rapport à l’augmentation de données et l’architecture des réseaux.



Loïck Bourdois