Semaine 9
$$\gdef \sam #1 {\mathrm{softargmax}(#1)}$$
$$\gdef \vect #1 {\boldsymbol{#1}} $$
$$\gdef \matr #1 {\boldsymbol{#1}} $$
$$\gdef \E {\mathbb{E}} $$
$$\gdef \V {\mathbb{V}} $$
$$\gdef \R {\mathbb{R}} $$
$$\gdef \N {\mathbb{N}} $$
$$\gdef \relu #1 {\texttt{ReLU}(#1)} $$
$$\gdef \D {\,\mathrm{d}} $$
$$\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}$$
$$\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}$$
$$\gdef \set #1 {\left\lbrace #1 \right\rbrace} $$
% My colours
$$\gdef \aqua #1 {\textcolor{8dd3c7}{#1}} $$
$$\gdef \yellow #1 {\textcolor{ffffb3}{#1}} $$
$$\gdef \lavender #1 {\textcolor{bebada}{#1}} $$
$$\gdef \red #1 {\textcolor{fb8072}{#1}} $$
$$\gdef \blue #1 {\textcolor{80b1d3}{#1}} $$
$$\gdef \orange #1 {\textcolor{fdb462}{#1}} $$
$$\gdef \green #1 {\textcolor{b3de69}{#1}} $$
$$\gdef \pink #1 {\textcolor{fccde5}{#1}} $$
$$\gdef \vgrey #1 {\textcolor{d9d9d9}{#1}} $$
$$\gdef \violet #1 {\textcolor{bc80bd}{#1}} $$
$$\gdef \unka #1 {\textcolor{ccebc5}{#1}} $$
$$\gdef \unkb #1 {\textcolor{ffed6f}{#1}} $$
% Vectors
$$\gdef \vx {\pink{\vect{x }}} $$
$$\gdef \vy {\blue{\vect{y }}} $$
$$\gdef \vb {\vect{b}} $$
$$\gdef \vz {\orange{\vect{z }}} $$
$$\gdef \vtheta {\vect{\theta }} $$
$$\gdef \vh {\green{\vect{h }}} $$
$$\gdef \vq {\aqua{\vect{q }}} $$
$$\gdef \vk {\yellow{\vect{k }}} $$
$$\gdef \vv {\green{\vect{v }}} $$
$$\gdef \vytilde {\violet{\tilde{\vect{y}}}} $$
$$\gdef \vyhat {\red{\hat{\vect{y}}}} $$
$$\gdef \vycheck {\blue{\check{\vect{y}}}} $$
$$\gdef \vzcheck {\blue{\check{\vect{z}}}} $$
$$\gdef \vztilde {\green{\tilde{\vect{z}}}} $$
$$\gdef \vmu {\green{\vect{\mu}}} $$
$$\gdef \vu {\orange{\vect{u}}} $$
% Matrices
$$\gdef \mW {\matr{W}} $$
$$\gdef \mA {\matr{A}} $$
$$\gdef \mX {\pink{\matr{X}}} $$
$$\gdef \mY {\blue{\matr{Y}}} $$
$$\gdef \mQ {\aqua{\matr{Q }}} $$
$$\gdef \mK {\yellow{\matr{K }}} $$
$$\gdef \mV {\lavender{\matr{V }}} $$
$$\gdef \mH {\green{\matr{H }}} $$
% Coloured math
$$\gdef \cx {\pink{x}} $$
$$\gdef \ctheta {\orange{\theta}} $$
$$\gdef \cz {\orange{z}} $$
$$\gdef \Enc {\lavender{\text{Enc}}} $$
$$\gdef \Dec {\aqua{\text{Dec}}}$$
Cours magistral partie A
Cours magistral partie B
Travaux dirigés
Dans cette section nous couvrons l’implémentation de modèles génératifs, à savoir les auto-encodeurs sous-complets, les auto-encodeurs débruieurs, les auto-encodeurs variationnels et les réseaux antagonistes génératifs. Nous analysons ces modèles du point de vue du cadre des modèles à base d’énergie (EBMs). Ce faisant, nous nous rendons compte que ces modèles génératifs peuvent être considérés comme des extensions des EBMs et qu’ils diffèrent les uns des autres par de subtils ajustements architecturaux.
Loïck Bourdois