第十四周
$$\gdef \sam #1 {\mathrm{softargmax}(#1)}$$
$$\gdef \vect #1 {\boldsymbol{#1}} $$
$$\gdef \matr #1 {\boldsymbol{#1}} $$
$$\gdef \E {\mathbb{E}} $$
$$\gdef \V {\mathbb{V}} $$
$$\gdef \R {\mathbb{R}} $$
$$\gdef \N {\mathbb{N}} $$
$$\gdef \relu #1 {\texttt{ReLU}(#1)} $$
$$\gdef \D {\,\mathrm{d}} $$
$$\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}$$
$$\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}$$
$$\gdef \set #1 {\left\lbrace #1 \right\rbrace} $$
% My colours
$$\gdef \aqua #1 {\textcolor{8dd3c7}{#1}} $$
$$\gdef \yellow #1 {\textcolor{ffffb3}{#1}} $$
$$\gdef \lavender #1 {\textcolor{bebada}{#1}} $$
$$\gdef \red #1 {\textcolor{fb8072}{#1}} $$
$$\gdef \blue #1 {\textcolor{80b1d3}{#1}} $$
$$\gdef \orange #1 {\textcolor{fdb462}{#1}} $$
$$\gdef \green #1 {\textcolor{b3de69}{#1}} $$
$$\gdef \pink #1 {\textcolor{fccde5}{#1}} $$
$$\gdef \vgrey #1 {\textcolor{d9d9d9}{#1}} $$
$$\gdef \violet #1 {\textcolor{bc80bd}{#1}} $$
$$\gdef \unka #1 {\textcolor{ccebc5}{#1}} $$
$$\gdef \unkb #1 {\textcolor{ffed6f}{#1}} $$
% Vectors
$$\gdef \vx {\pink{\vect{x }}} $$
$$\gdef \vy {\blue{\vect{y }}} $$
$$\gdef \vb {\vect{b}} $$
$$\gdef \vz {\orange{\vect{z }}} $$
$$\gdef \vtheta {\vect{\theta }} $$
$$\gdef \vh {\green{\vect{h }}} $$
$$\gdef \vq {\aqua{\vect{q }}} $$
$$\gdef \vk {\yellow{\vect{k }}} $$
$$\gdef \vv {\green{\vect{v }}} $$
$$\gdef \vytilde {\violet{\tilde{\vect{y}}}} $$
$$\gdef \vyhat {\red{\hat{\vect{y}}}} $$
$$\gdef \vycheck {\blue{\check{\vect{y}}}} $$
$$\gdef \vzcheck {\blue{\check{\vect{z}}}} $$
$$\gdef \vztilde {\green{\tilde{\vect{z}}}} $$
$$\gdef \vmu {\green{\vect{\mu}}} $$
$$\gdef \vu {\orange{\vect{u}}} $$
% Matrices
$$\gdef \mW {\matr{W}} $$
$$\gdef \mA {\matr{A}} $$
$$\gdef \mX {\pink{\matr{X}}} $$
$$\gdef \mY {\blue{\matr{Y}}} $$
$$\gdef \mQ {\aqua{\matr{Q }}} $$
$$\gdef \mK {\yellow{\matr{K }}} $$
$$\gdef \mV {\lavender{\matr{V }}} $$
$$\gdef \mH {\green{\matr{H }}} $$
% Coloured math
$$\gdef \cx {\pink{x}} $$
$$\gdef \ctheta {\orange{\theta}} $$
$$\gdef \cz {\orange{z}} $$
$$\gdef \Enc {\lavender{\text{Enc}}} $$
$$\gdef \Dec {\aqua{\text{Dec}}}$$
讲座A部分
「能量基础因素图形( Energy-Based factor graph)」,同时也介绍了如何有效地用它来推论。之后我们提供了一些有「简单因素」的能量基础因素图形的例子。最后,我们讨论了图形式变压器网路(Graph Transformer Net)。
讲座B
这个第二部分更进一步讨论了图形模型方法的应用到能量基础模型。之后花了一些时间来比较不同的损失函数们,我们也讨论了维特比算法的应用,也讨论了前向式算法到图形式变压器网路。我们之后也转为讨论反向传播的拉格朗日公式,和之后也说到讨论用在能量基础模型上的变分推理。
动手做
当去训练高度参数化了的模型时,如果是深度网路的话,这里就会有在训练资料时有过度拟合的危机。这就会带来更大的泛化误差。为了降低过度拟合,我们可以在训练中引入正则化,不鼓励某些解决方案会降低程度而令我们的模型变得更对应噪声。
Jonathan Sum(😊🍩📙)