Settimana 9
$$\gdef \sam #1 {\mathrm{softargmax}(#1)}$$
$$\gdef \vect #1 {\boldsymbol{#1}} $$
$$\gdef \matr #1 {\boldsymbol{#1}} $$
$$\gdef \E {\mathbb{E}} $$
$$\gdef \V {\mathbb{V}} $$
$$\gdef \R {\mathbb{R}} $$
$$\gdef \N {\mathbb{N}} $$
$$\gdef \relu #1 {\texttt{ReLU}(#1)} $$
$$\gdef \D {\,\mathrm{d}} $$
$$\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}$$
$$\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}$$
$$\gdef \set #1 {\left\lbrace #1 \right\rbrace} $$
% My colours
$$\gdef \aqua #1 {\textcolor{8dd3c7}{#1}} $$
$$\gdef \yellow #1 {\textcolor{ffffb3}{#1}} $$
$$\gdef \lavender #1 {\textcolor{bebada}{#1}} $$
$$\gdef \red #1 {\textcolor{fb8072}{#1}} $$
$$\gdef \blue #1 {\textcolor{80b1d3}{#1}} $$
$$\gdef \orange #1 {\textcolor{fdb462}{#1}} $$
$$\gdef \green #1 {\textcolor{b3de69}{#1}} $$
$$\gdef \pink #1 {\textcolor{fccde5}{#1}} $$
$$\gdef \vgrey #1 {\textcolor{d9d9d9}{#1}} $$
$$\gdef \violet #1 {\textcolor{bc80bd}{#1}} $$
$$\gdef \unka #1 {\textcolor{ccebc5}{#1}} $$
$$\gdef \unkb #1 {\textcolor{ffed6f}{#1}} $$
% Vectors
$$\gdef \vx {\pink{\vect{x }}} $$
$$\gdef \vy {\blue{\vect{y }}} $$
$$\gdef \vb {\vect{b}} $$
$$\gdef \vz {\orange{\vect{z }}} $$
$$\gdef \vtheta {\vect{\theta }} $$
$$\gdef \vh {\green{\vect{h }}} $$
$$\gdef \vq {\aqua{\vect{q }}} $$
$$\gdef \vk {\yellow{\vect{k }}} $$
$$\gdef \vv {\green{\vect{v }}} $$
$$\gdef \vytilde {\violet{\tilde{\vect{y}}}} $$
$$\gdef \vyhat {\red{\hat{\vect{y}}}} $$
$$\gdef \vycheck {\blue{\check{\vect{y}}}} $$
$$\gdef \vzcheck {\blue{\check{\vect{z}}}} $$
$$\gdef \vztilde {\green{\tilde{\vect{z}}}} $$
$$\gdef \vmu {\green{\vect{\mu}}} $$
$$\gdef \vu {\orange{\vect{u}}} $$
% Matrices
$$\gdef \mW {\matr{W}} $$
$$\gdef \mA {\matr{A}} $$
$$\gdef \mX {\pink{\matr{X}}} $$
$$\gdef \mY {\blue{\matr{Y}}} $$
$$\gdef \mQ {\aqua{\matr{Q }}} $$
$$\gdef \mK {\yellow{\matr{K }}} $$
$$\gdef \mV {\lavender{\matr{V }}} $$
$$\gdef \mH {\green{\matr{H }}} $$
% Coloured math
$$\gdef \cx {\pink{x}} $$
$$\gdef \ctheta {\orange{\theta}} $$
$$\gdef \cz {\orange{z}} $$
$$\gdef \Enc {\lavender{\text{Enc}}} $$
$$\gdef \Dec {\aqua{\text{Dec}}}$$
Lezione parte A
Discutiamo degli autoencoder discriminativi ricorrenti sparsi e della sparsità di gruppo. L’idea di base è la combinazione della codificazione sparsa con l’addestramento discriminativo. Approfondiamo la strutturazione di una rete con autoencoder ricorrente simile a LISTA e con un decodificatore. Dopodiché, discutiamo su come usare la sparsità di gruppo ai fini dell’estrazione di caratteristiche invarianti.
Lezione parte B
In questa sezione, parliamo dei modelli della realtà (world models) per controllo autonomo, incluse le architetture delle reti neurali e gli schemi di addestramento. Dopodiché, discutiamo della differenza fra i modelli della realtà e l’apprendimento per rinforzo (Reinforcement Learning, RL). Infine, studiamo le reti generative avversarie (Generative Adversarial Network, GAN, anche conosciuta in italiano come “rete antagonista generativa”) come modelli basati sull’energia con metodo contrastivo.
Pratica
Durante la pratica di questa settimana, esploriamo le GAN e come possono produrre modelli generativi realistici. Dopodiché compariamo le GAN con gli autoencoder variazionale (variational autoencoder, VAE) presentati nella settimana 8 per evidenziare le differenze chiave fra le due reti. Dopodiché, discutiamo di numerose limitazioni del modello delle GAN. Infine, andiamo a vedere il codice sorgente (source code) per l’esempio di Pytorch sulle reti generative avversarie convoluzionali profonde (Deep Convolutional GAN, DCGAN).
Marco Zullich