Semana 13
$$\gdef \sam #1 {\mathrm{softargmax}(#1)}$$
$$\gdef \vect #1 {\boldsymbol{#1}} $$
$$\gdef \matr #1 {\boldsymbol{#1}} $$
$$\gdef \E {\mathbb{E}} $$
$$\gdef \V {\mathbb{V}} $$
$$\gdef \R {\mathbb{R}} $$
$$\gdef \N {\mathbb{N}} $$
$$\gdef \relu #1 {\texttt{ReLU}(#1)} $$
$$\gdef \D {\,\mathrm{d}} $$
$$\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}$$
$$\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}$$
$$\gdef \set #1 {\left\lbrace #1 \right\rbrace} $$
% My colours
$$\gdef \aqua #1 {\textcolor{8dd3c7}{#1}} $$
$$\gdef \yellow #1 {\textcolor{ffffb3}{#1}} $$
$$\gdef \lavender #1 {\textcolor{bebada}{#1}} $$
$$\gdef \red #1 {\textcolor{fb8072}{#1}} $$
$$\gdef \blue #1 {\textcolor{80b1d3}{#1}} $$
$$\gdef \orange #1 {\textcolor{fdb462}{#1}} $$
$$\gdef \green #1 {\textcolor{b3de69}{#1}} $$
$$\gdef \pink #1 {\textcolor{fccde5}{#1}} $$
$$\gdef \vgrey #1 {\textcolor{d9d9d9}{#1}} $$
$$\gdef \violet #1 {\textcolor{bc80bd}{#1}} $$
$$\gdef \unka #1 {\textcolor{ccebc5}{#1}} $$
$$\gdef \unkb #1 {\textcolor{ffed6f}{#1}} $$
% Vectors
$$\gdef \vx {\pink{\vect{x }}} $$
$$\gdef \vy {\blue{\vect{y }}} $$
$$\gdef \vb {\vect{b}} $$
$$\gdef \vz {\orange{\vect{z }}} $$
$$\gdef \vtheta {\vect{\theta }} $$
$$\gdef \vh {\green{\vect{h }}} $$
$$\gdef \vq {\aqua{\vect{q }}} $$
$$\gdef \vk {\yellow{\vect{k }}} $$
$$\gdef \vv {\green{\vect{v }}} $$
$$\gdef \vytilde {\violet{\tilde{\vect{y}}}} $$
$$\gdef \vyhat {\red{\hat{\vect{y}}}} $$
$$\gdef \vycheck {\blue{\check{\vect{y}}}} $$
$$\gdef \vzcheck {\blue{\check{\vect{z}}}} $$
$$\gdef \vztilde {\green{\tilde{\vect{z}}}} $$
$$\gdef \vmu {\green{\vect{\mu}}} $$
$$\gdef \vu {\orange{\vect{u}}} $$
% Matrices
$$\gdef \mW {\matr{W}} $$
$$\gdef \mA {\matr{A}} $$
$$\gdef \mX {\pink{\matr{X}}} $$
$$\gdef \mY {\blue{\matr{Y}}} $$
$$\gdef \mQ {\aqua{\matr{Q }}} $$
$$\gdef \mK {\yellow{\matr{K }}} $$
$$\gdef \mV {\lavender{\matr{V }}} $$
$$\gdef \mH {\green{\matr{H }}} $$
% Coloured math
$$\gdef \cx {\pink{x}} $$
$$\gdef \ctheta {\orange{\theta}} $$
$$\gdef \cz {\orange{z}} $$
$$\gdef \Enc {\lavender{\text{Enc}}} $$
$$\gdef \Dec {\aqua{\text{Dec}}}$$
Lección parte A
En esta sección discutimos la arquitectura y convolución de las redes neuronales convolucionales tradicionales. A continuación, vemos el dominio de grafos. Entendemos las características de un grafo y definimos el grafo de convolución. Finalmente, presentamos los grafos espectrales de redes neuronales convolucionales y discutimos cómo realizar una convolución espectral.
Lección parte B
Esta sección cubre el espectro completo de los Grafos de Redes Convolucionales (GCNs), comenzando con la implementación de Convoluciones Espectrales (Spectral Convolution) mediante Redes Espectrales (Spectral Networks). Esto da perspectivas acerca del uso de otra definición convolucional de Correspondencia de Modelos (Template Matching) en grafos, lo cual da paso a las Redes Espaciales (Spatial Networks). Varias arquitecturas que emplean estos dos enfoques se describen con sus correspondientes ventajas y desventajas, experimentos, puntos de referencia y aplicaciones.
Práctica
En esta sección se presenta la red convolucional gráfica (GCN), la cual es un tipo de arquitectura que utiliza la estructura de los datos. De hecho, el concepto de GCNs está muy relacionado con la autoatención. Despues de entender la notación general, la representación y las ecuaciones de una GCN, profundizamos en la teoría y el código de un tipo particular de GCN conocido como GCN con compuerta de residuos (Residual Gated GCN).
JonathanVSV